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Abstract

Dynamic branch predictors are popular because they
can deliver accurate branch prediction without changes to
the instruction set architecture or pre-existing binaries.
However, to achieve the desired prediction accuracy, exist-
ing dynamic branch predictors require considerable
amounts of hardware to minimize the interference effects
due to aliasing in the prediction tables. We propose a new
dynamic predictor, the bi-mode predictor, which divides the
prediction tables into two halves and, by dynamically deter-
mining the current “mode” of the program, selects the ap-
propriate half of the table for prediction. This approach is
shown to preserve the merits of global history based predic-
tion while reducing destructive aliasing and, as a result, im-
proving prediction accuracy. Moreover, it is simple enough
that it does not impact a processor’s cycle time. We con-
clude by conducting a comprehensive study into the mech-
anism underlying two-level dynamic predictors and
investigate the criteria for their optimal designs. The anal-
ysis presented provides a general framework for studying
branch predictors.

1. Introduction

The ability to minimize stalls or pipeline bubbles that
may result from branches is becoming increasingly critical
as microprocessor designs implement greater degrees of in-
struction level parallelism. There are several techniques for
reducing branch penalties including guarded execution, ba-
sic block enlargement, and static and dynamic branch pre-
diction  [PnevmatikatosSohi94, Hwu93, Smith81,
FisherFreudenberger92, YehPatt91, PanSoRahmeh92].
Among these, dynamic branch prediction is perhaps the
most popular, because it yields good results and can be im-
plemented without changes to the instruction set architec-
ture or pre-existing binaries.

The strength of dynamic branch prediction is that it can
track branch behavior closely at run-time, providing a de-
gree of adaptivity that other approaches are lacking. This
adaptivity is especially critical when behavior of branches
can be affected by the input data of different program runs.
With the introduction of two-level schemes [YehPatt91],
the prediction accuracy of dynamic branch predictors has

1072-4451/97 $10.00 © 1997 IEEE

been pushed above 90%. As a result, two-level dynamic
branch predictors have been incorporated in several recent
high-performance microprocessors. Perhaps the best
known examples, at the time of writing, are the Pentium Pro
[Gwennap95] and Alpha 21264 [Gwennap96).

Among two-level predictors, those using global history
schemes have been shown to yield the best performance for
integer benchmarks [YehPatt93]. However, to achieve high
levels of accuracy, current dynamic branch predictors re-
quire considerable amounts of hardware because their most
significant weakness, the destructive aliasing problem, is
most easily solved by increasing the size of the predictors
[SechrestLeeMudge96]. This paper proposes a new tech-
nique, the bi-mode branch predictor, that is economical and
simple enough to avoid critical timing paths. Furthermore,
we demonstrate that on the IBS and SPEC CINT95 bench-
marks the bi-mode predictor performs on average better
than gshare, one of the best global history based predictors,
for the same cost. Finally, we conduct a comprehensive
study into the mechanism underlying two-level dynamic
predictors and investigate the criteria for their optimal de-
signs. The study explains why our proposed scheme per-
forms well and provides a general framework for studying
branch predictors.

The report is organized into five sections. In section 2,
we summarize the aliasing problem, and then introduce our
solution for de-aliasing. Section 3 describes our simulation
methodology and presents the simulation results. In section
4 we present an analysis of aliasing in dynamic branch pre-
dictors that explains the source of the improved perfor-
mance for the bi-mode predictor. Finally, in the conclusion
we propose future directions for this work.

2. Aliasing and De-aliasing

2.1 The aliasing problem

Branch outcomes are not usually the result of random ac-
tivities; most of the time they are correlated with past be-
havior and the behavior of neighboring branches. By
keeping track of the history of branch outcomes, it is possi-
ble to anticipate with a high degree of certainty which direc-
tion future branches will take.

However, current dynamic branch predictors still exhibit
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performance limits. These are due in part to the restricted
availability of information upon which to base predictions,
but more importantly due to shortcomings of design, espe-
cially the way that branch outcome history is exploited. In
current designs, dynamic predictors spend large amounts of
hardware to memorize this branch outcome history. Each
static (per-address) branch often has a biased behavior so
that it is either usually taken or usually not-taken. This can
be exploited by the conventional two-bit counter scheme to
predict future outcomes of a particular static branch. How-
ever, two-bit counter schemes are limited because branches
may behave differently from their biases under some special
conditions. These conditions are not difficult to recognize,
but recognition requires memory space. Therefore, to
achieve very high prediction accuracy, both the per-address
bias and the special conditions need to be identified and
memorized by dynamic predictors.

Global history—the outcomes of neighboring branch-
es—is a common way to identify special branch conditions.
Previous studies have shown that the global history indexed
schemes achieve good performance by storing the outcomes
of global history patterns in two-bit counters, e.g., the GAg
and GAs schemes [PanSoRahmeh92, YehPatt92]. Another
way to identify special branch conditions is to use per-ad-
dress history—the past outcomes of a branch itself, such as
PAg and PAs schemes [YehPait91]. The per-address history
scheme is also shown to be effective, especially for loop-in-
tensive floating-point programs. However, as we noted ear-
lier, [YehPatt93] shows that, for integer programs, global
history schemes tend to perform better than per-address his-
tory schemes because global schemes can make better pre-
dictions for if-then-else branches due to their ability to track
correlation with neighboring branches.

Nevertheless, the global history scheme is still limited by
destructive aliasing that occurs when two branches have the
same global history pattern, but opposite biases
[TalcottNemirovskyWood95, YoungGloySmith95]. This is
not due to the limited availability of information, but to the
indexing method which does not discriminate between
branches with the same global history patterns.

One proposal to overcome the destructive aliasing,
gshare, randomizes the index by xor-ing the global history
with the branch address [McFarling93]. It provides only
limited improvement [SechrestLeeMudge96]. Recently,
there have been several new proposals to reduce aliasing
problems [ChangEversPatt96, Sprangle97,
[MichaudSeznecUhlig97]. The best of  these
[MichaudSeznecUhlig97] employs a hardware hashing
scheme. A comparative study of these and the bi-mode
scheme can be found in [Lee97). The study shows that hard-
ware hashing is useful for small low cost systems. For large
systems the bi-mode scheme is the best cost-effective
scheme to date.
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Figure 1: Proposed branch prediction scheme
diagram

2.2 Proposed branch prediction scheme

The bi-mode branch predictor is aimed at the elimination
of destructive aliasing in global history indexed schemes.
This scheme, shown in Figure 1, splits the second-level
two-bit counter table into two halves. Given a history pat-
tern, two counters, one from each half, are selected. We re-
fer to these as the direction predictors. Meanwhile, another
two-bit counter table, indexed by the branch addresses only,
is used to provide a final selection for these two counters.
The counter table providing selection will be referred to as
the choice predictor. The final prediction is then made by
the state of the counter selected from the direction predic-
tors and, importantly, only the selected counter will be up-
dated with the branch outcome; the status of the unselected
one, will not be altered. The choice predictor is always up-
dated with the branch outcome, except that when the choice
is opposite to the branch outcome but the selected counter
of the direction predictors makes a correct final prediction.
This partial update policy is particularly effective when the
total hardware budget is small.

Our proposed scheme can improve global history in-
dexed schemes because although global history patterns are
still kept in the second level table, they are dynamically
classified before being stored. They are classified by a pre-
liminary prediction from the choice predictor which is sim-
ply a conventional two-bit counter scheme, and, as such,
typically can provide 80% or better prediction accuracy
with relatively modest cost. Thus, the bi-mode scheme di-
vides branches into two groups according to the per-address
bias of the choice predictor, and then uses the global history
patterns to identify the special conditions for each of two
groups separately. The effect of the choice predictor is to
separate the destructive aliases while keeping the harmless
aliases together.




3. Experimental Results

In this section, we demonstrate that our proposed bi-
mode branch predictor is more accurate and cost-effective
than one of the best two-level branch predictors, gshare. To
evaluate the improvement, we have conducted trace-driven
simulations.

3.1 Description of gshare scheme

In gshare, the global history is xor-ed together with the
low-order address bits of a branch to form an index. This in-
dex is then used to select a 2-bit saturating up-down counter
from a pattern history table (PHD. Depending on the sign
bit of the selected 2-bit counter, the branch is either predict-
ed as taken or not taken.

To make a fair comparison with the gshare predictor, the
best configuration of gshare must be determined and used.
This point is often overlooked and the single-PHT gshare
configuration is used for comparisons. However, this sin-
gle-PHT gshare configuration is not the optimal configura-
tion as was shown in [SechrestLeeMudge96]. To find the
best configuration, we exhaustively simulated all pair-wise
combinations of history length and address length. In gen-
eral, the best combination has multiple PHTs. Since the best
configuration is different for each benchmark, we present
results using the configuration that yields the best accuracy
for the average of all the benchmarks studied.

3.2 Description of input trace

To assess the performance of the bi-mode branch predic-
tor, we conducted a trace-driven simulation using the Ultrix
version of the Instruction Benchmark Suite (IBS-Ultrix)
benchmarks [Uhlig95] and the SPEC CINT95 benchmarks
[SPEC95].

The IBS-Ultrix benchmarks are a set of applications de-
signed to reflect realistic workloads. The traces of these
benchmarks were generated through hardware monitoring
of a MIPS R2000-based workstation. These traces were col-
lected under Ultrix 3.1, and include both kernel and user ac-
tivities.

For the SPEC CINT95 benchmark, we use ATOM
[EustaceSrivastava95], a code instrumentation tool from
Digital Equipment Corporation, to generate and capture ad-
dress traces. The benchmarks were first instrumented with
ATOM, then executed on a DEC 21064 workstation run-
ning OSF/1 3.0 to generate traces. These traces contained
only user-level instructions. The input to the SPEC95
benchmarks was a reduced input data set and is described in
Table 1. The branch statistics of traces from the IBS and the

1. The pattern history tables are the tables constituting the second-level
table of the two-level predictors, as defined in [YehPatt92]. In the two-
level predictor model, the number of PHTs is determined by the branch
address bits directly used as the index.

Benchmarks Input data file
w| compress bigtest.in, reduced
2 gce jump.i
% go 2stoned.in, traln data, reduced
o xlisp train.lsp
E perl scrabbl.in, reduced
@ vortex train data, reduced

Table 1: Description of the input data files used in

the SPEC CINT95 programs

Benchmarks static conditional | dynamic conditional
branches branches

0 compress 482 10,114,353
2 gce 16,035 26,520,618
g go 5112 17,873,772
O xlisp 636 26,008,567
w perl 1,974 39,714,684
@ vortex 6,599 27,792,020
groft 6,333 11,901,481
gs 12,852 16,307,247
x mpeg_play 5,598 9,566,290
g nroff 5,249 22,574,884
0 real_gcc 17,361 14,309,867
a sdet 5,310 5,514,439
verilog 4,636 6,212,381
video_play 4,606 5,759,231

Table 2: Static and dynamic branch counts in the
IBS and SPEC CINT95 programs

SPEC CINT95 are summarized in Table 2.
3.3 Simulation results

Figure 2 shows the misprediction rates for the best
gshare and bi-mode predictors. In our simulation the best
configurations of gshare, which are labeled gshare.best, al-
ways have multiple PHTs in the second-level table. Note
that gshare.best is the best for the averaged results, not nec-
essary the best for individual benchmarks. For easy compar-
ison with other published results, we also include the
misprediction rates for the single-PHT gshare configura-
tion, which is labeled gshare.1PHT. In Figure 2, the vertical
axis represents the branch misprediction rate, and the hori-
zontal axis for the size of predictors. A lower curve indi-
cates that the scheme has better performance for the same
cost. Cost is measured by counting the number of bytes used
in the 2-bit counters. Note that the bi-mode predictors natu-
rally have a cost that is 1.5 times that of the next smaller
gshare scheme?. This reflects the cost of the choice predic-
tors.

Figure 2 shows the bi-mode predictors outperforms
gshare predictors for all sizes of predictors measured, This




CINT95-AVERAGE 10 IBS-AVERAGE
14 I ! gshare. T/PHT —~e— * ' ' gshare.1PHT ——
. gshare.best - 9} i gshare.best —x— |1
12 A bi-mode —e— | -~ 8 } s bi-mode —e—
§ """"""""" \ i &\i i ‘\\ :
o 10 B2 . o 7 T
s ., o H o ...
6
T 8 £
8 ..% 5
- 1 -
s a4 : & 3r =
2 ' = 2k 3 . o
= l :
2 ! 1 T :
0 R %5 05 1 2 4 8 16 a
025 05 1 2 4 8 16 32 - " 5
Predictor Size (K bytes) Predictor Size (K bytes)
Figure 2: Averaged misprediction rates for SPEC CINT95 and IBS-Ultrix
compress gce " go
" j gshare.1PHT —— 2 i Gshare.1PRT —o— j gshare.IPHT —e—
e s = | Hwm || _wt o = |
o < — . } —— = ¥ ——
£ . — e 15f - 4 8 \\
s 10 T 2 s B
g Ll —= . | E g ol
s 5 w0} - - 5
3 6 - - 3 3 15 .
2 8 .
g 4f - - § g 1ol
H 2 2
2 - st
[} e 0 0 .
025 05 1 2 4 8 16 32 025 05 1 2 4 8 16 32 025 05 1 2 4 8 32
Predictor Size (K bytes) Predictor Size (K bytes) Predictor Size (K bytes)
xisp pert . vortex
12 i gshare. 1PHT —o— 12 ! gshare.1PHT —e— 7 . ! gshare.1PHT ——
gshare.best - gshare,best —»— s \ ! gshare.best - ||
& 10 x bi-mods —e— = 10 bi-mode —e— |4 = \
s 8 -— - P s ®
g M"\M 1 = g 41 ]
c [ =4 c
E . : . = E, |
= 2 = 2 = 1} : :
0 L. 0 i o A E AL i
025 05 1 2 4 8 16 32 025 05 1 2 4 8 32 025 05 1 2 4 8 16 32
Predictor Size {K bytes) Predictor Size (K bytes) Predictor Size (K bytes)

Figure 3: Misprediction rates for SPEC CINT95

is indicated by lower curves. In addition, the bi-mode pre-
dictors are more cost effective, because, for predictors larg-
er than 4K bytes, they need less than half the size of gshare
predictors to achieve the same misprediction rate.

Bi-mode predictors also outperform gshare on most of
the individual benchmark examined, see Figure3 and
Figure 4. Moreover, the single-PHT gshare scheme is worse
than the multiple-PHTs gshare scheme for all benchmarks
except the compress and xlisp, where it outperforms even
the bi-mode scheme. These two benchmarks, with the few-

2. In our experiments, all two-bit counters in gshare schemes are initial-
ized to weakly-taken for each benchmark run. For the bi-mode scheme,
the choice predictor is reset to weakly-taken, and one bank of the direc-
t;(])\n predictor is reset to weakly-not-taken and the other bank is weakly-
taken.

est static branches, have no aliasing problems and thus can
enjoy the benefit from correlation in branch histories. The
results of these two small benchmarks correspond to the
findings reported by Sechrest et al. [SechrestleeMudge96].
The case of the go benchmark, where the bi-mode method
is beaten by the multiple-PHTs, will be discussed in more
detail in the next section.

4. Analysis

Many branches have a tendency to be either taken or not-
taken most of time. Common examples are branches for er-
ror checking and looping. These kinds of branches are usu-
ally described as being strongly biased in one direction. As
might be expected, strongly biased branches are much easi-
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Figure 4: Misprediction rates for IBS-Uitrix

er to predict than weakly biased branches in dynamic
branch predictors, and this was confirmed by Chang et al.
[Chang94]. In the same study, they also measured the dis-
tribution of branch biases for SPEC CINT92. Their mea-
surement showed that on average about 50% of total
dynamic branches are attributed to the static branches that
are biased in either the taken or not-taken direction for
more than 90% of the time.

In this section, our analysis extends the idea of bias to
the dynamic branch substreams that arrive at each two-bit
counter in the second-level table. Using this concept, we
will demonstrate the advantages and drawbacks of two
kinds of information used in the two-level scheme, specifi-
cally, the branch address and global history. The analysis
allows us explain why the bi-mode scheme can improve on
current dynamic branch predictors.

4.1 Bias measurement for global-history based
schemes

As we have noted before, the reason that two-level dy-
namic branch predictors can achieve higher prediction ac-

curacy than the traditional two-bit counter scheme
proposed by Smith [Smith81] is because, in addition to the
branch address, they incorporate the branch history infor-
mation to form the index for the second-level two-bit
counter table. The index for the second-level table divides
the dynamic branch stream into substreams that are dircct-
ed to a saturating two-bit counter. Ideally, the index should
generate highly biased substreams so that the value of the
saturating counter selected by the index can stay at one of
the saturated values most of time. Globat history, compared
to the branch address, can divide a dynamic branch stream
into more highly biased substreams, as we will show later.
However, if the indexing method mixes oppositely biased
substreams together, then destructive aliasing can arise and
the associated counter will perform badly as a predictor, be-
cause it will oscillate between the two saturated values. Our
study will compare using branch addresses with global his-
tory to separate out oppositely biased substreams, and how
aliasing can degrade the performance of two-level schemes
using global history.

To contrast the benefits of address and global history

]



branch dynarmic 0 unt count of taken O.Ut' . normalized count from i=b
address. i when using comes when using bias class toc, Ny
’ counter ¢, Is;d counter ¢ 1 oe
0x 001 12 1 ST 12/50 = 24%
0x 005 20 SNT 20/50 = 40%
0x 100 8 3 wWB 8/50 =16%
0x 150 10 SNT 10/50 = 20%

Table 3: An example of calculating the normalized count for a counter ¢

bits, we consider two alternative two-level gshare style pre-
dictors. Both have the same size second-level tables, 256
counters, but differ in that one employs more history bits,
representing history-indexed schemes, while the other rep-
resents address-index schemes. The first scheme xors 8 bits
of branch address with 8 bits of global history to form the
index into the second-level table (“history-indexed”). The
second scheme xors 8 bits of branch address with only 2 bits
of global history as the index (“address-indexed”).

We define three bias classes on a stream of branch out-
comes: 1) strongly taken (ST) if the outcomes are taken
90% of the time or more; 2) strongly not taken (SNT) if the
outcomes are not taken 90% of the time or more; and 3)
weakly biased (WB) if the neither of the above apply.

We are interested in the stream of branch outcomes, Sij»
from a particular static branch, I, to a particular prediction
counter, j. This stream belongs to one of the three bias class-
es, i.e., exactly one of the following is true: sij € ST, S €
SNT, or 5;;€ WB. A good indexing method will create these
streams so that the following two conditions hold:

1. The number of streams that are in the WB class is kept
small.

2. Most of the streams incident on a particular prediction
counter, j = ¢, belong to only the ST class, or alternatively,
only the SNT class, i.e., s;. € ST for most i, or s;, € SNT for
most i. A counter should not see an even mix of streams
from both classes or its prediction ability will be reduced.

Condition 2 actually states that one of the two strongly
biased class should dominate the other strongly biased class
at a counter. When this domination occurs, the counter will
be biased at one saturated value with little destructive inter-
ference. We will refer to the more frequent strongly-biased
class at a counter as the dominant class, and the other less
frequent strongly-biased class as the non-dominant class.

To be more precise, we should consider streams weight-
ed by their lengths. If Is;] is the number of outcomes in the
stream s, we define the normalized count that a branch, i =
b, contributes to a particular prediction counter, j = c, to be:

Nb _ lsbcl

¢ =
Z Isiz:I

over all static branches i

Thus the two conditions become:

1. (Z;(N;p) | for those i such that 5;, € WB) << (3;(N;,) |
for those i such that s;, ¢ WB)

2. (Zi(N;,) | for those i such that s;. € ST) should differ
greatly from (Z;(NV;,) | for those i such that 5;, € SNT). In an
ideal situation, one of the sums should be 0.

Table 3 illustrates the normalized count resulting from
three streams incident on the same counter c. In this exam-
ple, there is a total of four static branches (i = 1,..,4) whose
addresses are 0x001, 0x005, 0x100 and 0x150, respectively,
that used the two-bit counter ¢ for prediction during the pro-
gram execution (they may also use other counters too).
These four streams fall into different bias classes with re-
spect to ¢. The normalized count of ST class at the counter
¢ is 24%, the SNT class is 60% (40%+20%), and the WB
class is 16%. Because the SNT class is more frequent than
the ST class, the SNT is the dominant class in the counter ¢,
and the ST is the non-dominant class. In fact, Table 3 shows
an undesirable situation because the indexing method has
done a poor job of separating the bias classes and the SNT
class is not overwhelmingly dominant.

Figure 5 illustrates the bias classes for all of the predic-
tion counters for the gcc benchmark. We have performed
the same experiments for other SPEC benchmarks, and we
select gcc because it is representative of the results from the
other benchmarks, see [SechrestLeeMudge96]. The X axis
lists all the counters in the second-level table, and the Y axis
represents the normalized counts of the three bias classes in
each counter. The counters listed in the X axis are sorted ac-
cording to the normalized dynamic frequency of WB class.
It can be seen that the area size of WB region of the history-
indexed scheme is smaller than that of the address-indexed
one. This suggests that the scheme employing more branch
history can generate more highly biased substreams for pre-
dictors. If there is no harmful aliasing problem in the histo-
ry-index scheme, i.e., each counter only needs to deal with
substreams of one bias class, the prediction accuracy will be
very high [TalcottNemirovsky Wood95,
YoungGloySmith95].

However, in the usual situation where harmful aliasing
does exist, the performance of the history based scheme de-
grades. As shown in the same figure (Figure 5), the non-
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Figure 5: Bias breakdown for the gshare scheme
in the SPEC CINT95 gcc benchmark.
History-indexed on the top, address-
indexed on the bottom

This figure shows the bias of branch outcome substreams
arriving at each of 256 counters in a second-level table. The
top graph is for the history-index scheme (8 bits of branch
address xor-ed with 8 bits of global history); the bottom graph
is for the address-indexed scheme (8 bits of branch address
xor-ed with 2 bits of global history). These two graphs illus-
trate the difference between the two indexing methods. The
address-indexed scheme suffers from a larger number of
weakly biased (WB) branch substreams, while the history-
indexed scheme suffers from more non-dominant sub-
streams, implying a high degree of destructive interference
between strongly but oppaositely biased streams (between the
SNT and ST classes).

dominant class in the history-indexed scheme is larger than
the one in the address-indexed scheme. In other words, al-
though the history-indexed selects the greater number of
highly biased substreams, it does not separate the taken and
not-taken ones as well as address-indexed scheme.

To summarize the analysis above, an ideal dynamic
branch predictor should generate as few weakly biased sub-
streams as possible; in other words, the area of the weakly
biased region should be as small as possible. At the same
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Figure 6: Bias breakdown for the bi-mode
scheme

This figure shows the bias of branch substreams of each
counter for the bi-mode scheme. This bi-mode scheme has a
128-counter choice predictor and two 128-counter direction
predictors. As shown in the figure, the dominant substreams
dominate most of the counters of the second-level table,
implying that interference is reduced significantly.

time, the resulting substreams merged at each counter
should be as unidirectional as possible; in other words, the
dominant area in Figure 5 should be large. Unfortunately,
neither the address-indexed scheme nor the history-indexed
scheme can achieve both of these two design goals simulta-
neously.

4.2 Bias measurement for the bi-mode scheme

In this subsection, we repeat the analysis above for the
bi-mode prediction scheme. The configuration under exam-
ination has a 128-counter choice predictor indexed by the
branch address and two banks of 128 counters in the sec-
ond-level table, each of which is indexed by 7 bits of branch
address xor-ed with 7 bits of global history. This system has
about 50% more bytes than the predictors in the previous
subsection, so the following analysis should be viewed
qualitatively.

Figure 6 presents the measurement results. It can be seen
that the weakly biased class in the bi-mode scheme is kept
as small as the one in the history-indexed scheme, indicat-
ing that the advantage of employing history information is
preserved. On the other hand, Figure 6 also shows the bi-
mode scheme yields a much larger area for the dominant
class than the history-indexed scheme, implying that de-
structive aliasing has been reduced.

The counting arguments that we employ to classify the
ST, SNT, and WB classes are open to the criticism that they
do not capture the order in which the ST and SNT runs ap-
pear. For example, it is undesirable for them to be inter-
mixed so that the stream changes between the two classes.
As a final experiment, we have counted the numbers of




Dominant Non-dominant WB
history-indexed 3,826,578 3,589,689 2,252,874
bi-mode 3,685,544 2,717,563 2,226,353

Table 4: Numbers of changes between different
bias classes for the history-indexed and
bi-mode schemes

This table shows numbers of changes between branch out-
come streams of different bias classes in the history-indexed
and bi-mode schemes. We first count changes for each bias
class in a counter, and then accumulate the counts of all
counters for a scheme. For example, the count for the domi-
nant class of the history-indexed scheme is the total number
of changes of the dominant class due to interference by the
other two classes in the scheme.

changes between bias classes due to interference. Table 4
shows the results for the history-indexed and bi-mode
schemes. The bi-mode scheme has fewer changes, implying
that its ST and SNT classes are less intermingled. This
means less interference, and further illustrates why our pro-
posed prediction scheme perform better than conventional
two-level schemes.

4.3 Breakdown of misprediction for the gshare
and bi-mode schemes

We have also measured ti.e misprediction contributed by
three biased classes for the gshare and bi-mode schemes.
Again, for the gshare scheme, the configurations using few-
er global history bits and more global history bits are both
included for comparison.

Figure 7 presents the measurement results for the gec
benchmark. Three different sizes are studied for the branch
predictors: 256, 1024, and 32,768 counters in the second
level table. For each configuration, the misprediction is bro-
ken down to three categories according to the bias classes.
In other words, the sum of mispredictions from three classes
is the misprediction rate for the corresponding scheme. For
the gshare predictors of the same size, the one using fewer
global history bits always has the least error from the
strongly-biased classes, but it suffers from poor prediction
for the weakly-biased substream. The bi-mode scheme
keeps areduced error for the weakly biased class, while suc-
cessfully reducing the error from strongly-biased classes.

4.4 go benchmark

In Section 3, we noted that the bi-mode scheme was not
the best for the go benchmark. In this section, we provide
further analysis.

The go benchmark is intrinsically hard to predict because
about half of its dynamic branches are in the WB class.
Figure 8 shows the misprediction contributed by the three
bias classes for the go benchmark. It is clear that for all the
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Figure 7: Misprediction contributed by three bias
classes in gcc

In this figure, three schemes are compared, a gshare using
fewer history bits (representing the address-indexed
scheme), a gshare using more history bits (history-indexed)
and the bi-mode scheme. For each scheme, three different
sizes of second-level tables are examined: 256, 1K and 32K
counters. gshare (m) represents a gshare scheme that uses
m-bit global history, while bi-mode (m) represents a bi-mode
scheme that uses m-bit global history for its direction predic-
tors. The choice predictor of the bi-mode scheme is half the
size of its second-level table. As shown in the figure, the
address-indexed scheme always has larger misprediction for
the WB class. The history-indexed scheme has less mispre-
diction for the WB class, but has more for the SNT and ST
classes due to interference. The bi-mode scheme reduces
error from the WB and reduces, in most cases, the mispredic-
tion for the SNT and ST by removing interference.
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Figure 8: Misprediction contributed by three bias
classes in go

This figure shows misprediction due to three bias classes for
the go benchmark. As the same in Figure 7, three schemes
with three different sizes of second-level tables are com-
pared. As shown in the figure, the misprediction due to the
WB class dominates in go for three schemes, and thus the
interference between SNT and ST classes is not the major
concern. To improve prediction accuracy for go, more history
bits should be used because it is an effective way to remove
the WB class. Note that as more history bits are used, the rel-
ative misprediction rates due to the WB class becomes
smaller.




schemes and configurations the misprediction for the WB
class dominates—destructive aliasing is not the major con-
cern. There is not much room for the bi-mode scheme to im-
prove because it is targeted at eliminating harmful aliasing
rather than improving prediction for the weakly biased sub-
streams. As observed in the previous subsection, the dy-
namic frequency of the weakly biased class is mainly
determined by the number of global history bits used. From
Figure 8, we see that the error of the WB class is reduced as
more global history bits are applied. The prediction accura-
cy for programs like the go benchmark will only improve if
more global history information is employed so that more
strongly biased substreams can be generated.

5. Concluding Remarks

In this paper, a new global-history based branch predic-
tion scheme, the bi-mode predictor, is proposed. It is de-
signed to improve predictions by eliminating the aliasing in
dynamic branch predictors. Its success relies on dynamical-
ly determining the taken or not-taken direction with an ac-
curate but simple choice predictor. This classification can
help removing much of the destructive aliasing while keep-
ing the harmless aliasing together for the two-bit counter ta-
bles.

A detailed analysis on the mechanism of two-level
scheme’s index system was also presented in the paper.
From the analysis we found that by using more global his-
tory bits in an index can move more branches from the
weakly biased group to the strongly biased group, but these
indices suffer from destructive aliasing. Using more branch
address bits reduces the destructive aliasing but increases
the weakly biased group. The benefits of using branch ad-
dresses and global history cannot be preserved in current
two-level schemes simultaneously, but they can in the bi-
mode scheme.

The bi-mode scheme can outperform other dynamic pre-
dictors, yet there is still room for improvement. One poten-
tial shortcoming for the bi-mode scheme is that, though it
can distinguish strongly taken and strongly not-taken sub-
streams as shown in Figure 6, it can still suffer from inter-
ference between the weakly biased and strongly biased
substreams. Therefore, there are at least two directions for
the future work: one is to find a cost-effective way to reduce
the weakly biased substreams, and the other is to further
separate the weakly-biased substreams from the strongly-
biased substreams for the counters. We are currently inves-
tigating these issues.
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