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Abstract 

Dynamic branch predictors are popular because they 
can deliver accurate branch prediction without changes to 
the instruction set architecture or pre-existing binaries. 
However, to achieve the desiredprediction accuracy, exist- 
ing dynamic branch predictors require considerable 
amounts of hardware to minimize the integerence effects 
due to aliasing in the prediction tables. We propose a new 
dynamic predictor, the bi-mode predictor, which divides the 
prediction tables into two halves and, by dynamically deter- 
mining the current “mode” of the program, selects the ap- 
propriate half of the table for prediction. This approach is 
shown to preserve the merits of global history basedpredic- 
tion while reducing destructive aliasing and, as a result, im- 
proving prediction accuracy. Moreover, it is simple enough 
that it does not impact a processor’s cycle time. We con- 
clude by conducting a comprehensive study into the mech- 
anism underlying two-level dynamic predictors and 
investigate the criteria for their optimal designs. The anal- 
ysis presented provides a general framework for studying 
branch predictors. 

1. Introduction 

The ability to minimize stalls or pipeline bubbles that 
may result from branches is becoming increasingly critical 
as microprocessor designs implement greater degrees of in- 
struction level parallelism. There are several techniques for 
reducing branch penalties including guarded execution, ba- 
sic block enlargement, and static and dynamic branch pre- 
diction [PnevmatikatosSohi94, Hwu93, Smith81, 
FisherFreudenberger92, YehPatt91, PanSoRahmeh921. 
Among these, dynamic branch prediction is perhaps the 
most popular, because it yields good results and can be im- 
plemented without changes to the instruction set architec- 
ture or pre-existing binaries. 

The strength of dynamic branch prediction is that it can 
track branch behavior closely at run-time, providing a de- 
gree of adaptivity that other approaches are lacking. This 
adaptivity is especially critical when behavior of branches 
can be affected by the input data of different program runs. 
With the introduction of two-level schemes [YehPattgl], 
the prediction accuracy of dynamic branch predictors has 
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been pushed above 90%. As a result, two-level dynamic 
branch predictors have been incorporated in several rcccnt 
high-performance microprocessors. Perhaps the best 
known examples, at the time of writing, are the Pentium Pro 
[Gwennap and Alpha 21264 [Gwennap96]. 

Among two-level predictors, those using global history 
schemes have been shown to yield the best performance for 
integer benchmarks [YehPatt93]. However, to achieve high 
levels of accuracy, current dynamic branch predictors rc- 
quire considerable amounts of hardware because their most 
significant weakness, the destructive aliasing problem, is 
most easily solved by increasing the size of the predictors 
[SechrestLeeMudge96]. This paper proposes a new tech- 
nique, the bi-mode branch predictor, that is economical and 
simple enough to avoid critical timing paths. Furthermore, 
we demonstrate that on the IBS and SPEC CINT95 bench- 
marks the bi-mode predictor performs on average better 
than gshare, one of the best global history based predictors, 
for the same cost. Finally, we conduct a comprehcnsivc 
study into the mechanism underlying two-level dynamic 
predictors and investigate the criteria for their optimal dc- 
signs. The study explains why our proposed scheme pcr- 
forms well and provides a general framework for studying 
branch predictors. 

The report is organized into five sections. In section 2, 
we summarize the aliasing problem, and then introduce our 
solution for de-aliasing. Section 3 describes our simulation 
methodology and presents the simulation results. In section 
4 we present an analysis of aliasing in dynamic branch pre- 
dictors that explains the source of the improved perfor- 
mance for the bi-mode predictor. Finally, in the conclusion 
we propose future directions for this work. 

2. Aliasing and De-aliasing 

2.1 The aliasing problem 

Branch outcomes are not usually the result of random ac- 
tivities; most of the time they are correlated with past bc- 
havior and the behavior of neighboring branches. By 
keeping track of the history of branch outcomes, it is possi- 
ble to anticipate with a high degree of certainty which direc- 
tion future branches will take. 

However, current dynamic branch predictors still exhibit 
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performance limits. These are due in part to the restricted 
availability of information upon which to base predictions, 
but more importantly due to shortcomings of design, espe- 
cially the way that branch outcome history is exploited. In 
current designs, dynamic predictors spend large amounts of 
hardware to memorize this branch outcome history. Each 
static (per-address) branch often has a biased behavior so 
that it is either usually taken or usually not-taken. This can 
be exploited by the conventional two-bit counter scheme to 
predict future outcomes of a particular static branch. How- 
ever, two-bit counter schemes are limited because branches 
may behave differently from their biases under some special 
conditions. These conditions are not difficult to recognize, 
but recognition requires memory space. Therefore, to 
achieve very high prediction accuracy, both the per-address 
bias and the special conditions need to be identified and 
memorized by dynamic predictors. 

Global history-the outcomes of neighboring branch- 
es-is a common way to identify special branch conditions. 
Previous studies have shown that the global history indexed 
schemes achieve good performance by storing the outcomes 
of global history patterns in two-bit counters, e.g., the GAg 
and GAS schemes [PanSoRahmeh92, YehPatt921. Another 
way to identify special branch conditions is to use per-ad- 
dress history-the past outcomes of a branch itself, such as 
PAg and PAS schemes [YehPatt91]. The per-address history 
scheme is also shown to be effective, especially for loop-in- 
tensive floating-point programs. However, as we noted ear- 
lier, [YehPatt93] shows that, for integer programs, global 
history schemes tend to perform better than per-address his- 
tory schemes because global schemes can make better pre- 
dictions for if-then-else branches due to their ability to track 
correlation with neighboring branches. 

Nevertheless, the global history scheme is still limited by 
destructive aliasing that occurs when two branches have the 
same global history pattern, but opposite biases 
[TalcottNemirovskyWood95, YoungGloySmithB.?i]. This is 
not due to the limited availability of information, but to the 
indexing method which does not discriminate between 
branches with the same global history patterns. 

One proposal to overcome the destructive aliasing, 
gshare, randomizes the index by xor-ing the global history 
with the branch address [McFarling93]. It provides only 
limited improvement [SechrestLeeMudge96]. Recently, 
there have been several new proposals to reduce aliasing 
problems [ChangEversPatt96, Sprangle97, 
(MichaudSeznecUhlig971. The best of these 
lIvlichaudSeznecUhlig971 employs a hardware hashing 
scheme. A comparative study of these and the bi-mode 
scheme can be found in [Lee97]. The study shows that hard- 
ware hashing is useful for small low cost systems. For large 
systems the bi-mode scheme is the best cost-effective 
scheme to date. 
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Figure 1: Proposed branch prediction scheme 
diagram 

2.2 Proposed branch prediction scheme 

The bi-mode branch predictor is aimed at the elimination 
of destructive aliasing in global history indexed schemes. 
This scheme, shown in Figure 1, splits the second-level 
two-bit counter table into two halves. Given a history pat- 
tern, two counters, one from each half, are selected. We re- 
fer to these as the direction predictors. Meanwhile, another 
two-bit counter table, indexed by the branch addresses only, 
is used to provide a final selection for these two counters. 
The counter table providing selection will be referred to as 
the choice predictor. The final prediction is then made by 
the state of the counter selected from the direction predic- 
tors and, importantly, only the selected counter will be up- 
dated with the branch outcome; the status of the unselected 
one, will not be altered. The choice predictor is always up- 
dated with the branch outcome, except that when the choice 
is opposite to the branch outcome but the selected counter 
of the direction predictors makes a correct final prediction. 
This partial update policy is particularly effective when the 
total hardware budget is small. 

Our proposed scheme can improve global history in- 
dexed schemes because although global history patterns are 
still kept in the second level tabIe, they are dynamically 
classified before being stored. They are classified by a pre- 
liminary prediction from the choice predictor which is sim- 
ply a conventional two-bit counter scheme, and, as such, 
typically can provide 80% or better prediction accuracy 
with relatively modest cost. Thus, the bi-mode scheme di- 
vides branches into two groups according to the per-address 
bias of the choice predictor, and then uses the global history 
patterns to identify the special conditions for each of two 
groups separately. The effect of the choice predictor is to 
separate the destructive aliases while keeping the harmless 
aliases together. 
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3. Experimental Results 

In this section, we demonstrate that our proposed bi- 
mode branch predictor is more accurate and cost-effective 
than one of the best two-level branch predictors, gshare. To 
evaluate the improvement, we have conducted trace-driven 
simulations. 

3.1 Description of gshare scheme 

In gshare, the global history is xor-ed together with the 
low-order address bits of a branch to form an index. This in- 
dex is then used to select a 2-bit saturating up-down counter 
from a pattern history table (PHT)‘. Depending on the sign 
bit of the selected 2-bit counter, the branch is either predict- 
ed as taken or not taken. 

To make a fair comparison with the gshare predictor, the 
best configuration of gshare must be determined and used. 
This point is often overlooked and the single-PHT gshare 
configuration is used for comparisons. However, this sin- 
gle-PHT gshare configuration is not the optimal configura- 
tion as was shown in [SechrestLeeMudge96]. To find the 
best configuration, we exhaustively simulated all pair-wise 
combinations of history length and address length. In gen- 
eral, the best combination has multiple PHTs. Since the best 
configuration is different for each benchmark, we present 
results using the configuration that yields the best accuracy 
for the average of all the benchmarks studied. 

3.2 Description of input trace 

To assess the performance of the bi-mode branch predic- 
tor, we conducted a trace-driven simulation using the Ultrix 
version of the Instruction Benchmark Suite (IBS-Ultrix) 
benchmarks [Uhlig95] and the SPEC CINT9.5 benchmarks 
[SPEC95]. 

The IBS-Ultrix benchmarks are a set of applications de- 
signed to reflect realistic workloads. The traces of these 
benchmarks were generated through hardware monitoring 
of a MIPS R2000-based workstation. These traces were col- 
lected under Ultrix 3.1, and include both kernel and user ac- 
tivities. 

For the SPEC CINT95 benchmark, we use ATOM 
[EustaceSrivastava95], a code instrumentation tool from 
Digital Equipment Corporation, to generate and capture ad- 
dress traces. The benchmarks were first instrumented with 
ATOM, then executed on a DEC 21064 workstation run- 
ning OSF/l 3.0 to generate traces. These traces contained 
only user-level instructions. The input to the SPEC95 
benchmarks was a reduced input data set and is described in 
Table 1. The branch statistics of traces from the IBS and the 

1. The pattern history tables are the tables constituting the second-level 
table of the two-level predictors, as defined in [YehPatt92]. In the two- 
level predictor model, the number of PHTs is determined by the branch 
address bits directly used as the index. 

Benchmarks Input data file 

2 
compress biglesth, reduced 

5 
w jump.i 

6 90 2stone9.h, train data, reduced 

Y 
xl&p trainhp 

8 
Ped scrabblh, reduced 

vortex train data, reduced 

Table 1: Description of the input data files used in 
the SPEC CINT95 programs 

Benchmarks 
static conditional dynamic conditional 

branches branches 
I 

compress 1 
1 

402 I 10,114,353 

WC 
90 

xlisp 
per1 

gs 
mw&v 

nroff 
real-gee 

sdet 
verilog 

video-play 

16,035 26,520,618 
5,112 17,673,772 

636 25,008,567 
1,974 39,714,684 
6,599 27,792,020 

6,333 11,901,481 
12,852 16,307,247 
5,598 9,566,290 
5,249 22,574,884 

17,361 14,309,867 
5,310 5,514,439 
4,636 6,212,381 
4,606 5,759,231 

Table 2: Static and dynamic branch counts in the 
IBS and SPEC CINT95 programs 

SPEC CINT95 are summarized in Table 2. 

3.3 Simulation results 

Figure 2 shows the misprediction rates for the best 
gshare and bi-mode predictors. In our simulation the best 
configurations of gshare, which are labeled gshare.best, al- 
ways have multiple PHTs in the second-level table Note 
that gshare.best is the best for the averaged results, not ncc- 
essary the best for individual benchmarks. For easy compar- 
ison with other published results, we also include the 
misprediction rates for the single-PHT gshare configura- 
tion, which is labeled gshare.IPHT. In Figure 2, the vertical 
axis represents the branch misprediction rate, and the hori- 
zontal axis for the size of predictors. A lower curve indi- 
cates that the scheme has better performance for the same 
cost. Cost is measured by counting the number of bytes used 
in the 2-bit counters. Note that the bi-mode predictors natu- 
rally have a cost that is 1.5 times that of the next smaller 
gshare scheme2. This reflects the cost of the choice predic- 
tors. 

Figure 2 shows the bi-mode predictors outperforms 
gshare predictors for all sizes of predictors measured. This 
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Figure 2: Averaged misprediction rates for SPEC CINT95 and IBS-Ultrix 
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Figure 3: Misprediction rates for SPEC CINT95 

is indicated by lower curves. In addition, the bi-mode pre- 
dictors are more cost effective, because, for predictors larg- 
er than 4K bytes, they need less than half the size of gshare 
predictors to achieve the same misprediction rate. 

Bi-mode predictors also outperform gshare on most of 
the individual benchmark examined, see Figure 3 and 
Figure 4. Moreover, the single-PHT gshare scheme is worse 
than the multiple-PHTs gshare scheme for all benchmarks 
except the compress and xlisp, where it outperforms even 
the bi-mode scheme. These two benchmarks, with the few- 

2. In our experiments, all two-bit counters in gsbare schemes are initial- 
ized to weakly-taken for each benchmark run. For the bi-mode scheme, 
the choice predictor is reset to weakly-taken, and one bank of the direc- 
tion predictor is reset to weakly-not-taken and the other bank is weakly- 
taken. 

est static branches, have no aliasing problems and thus can 
enjoy the benefit from correlation in branch histories. The 
results of these two small benchmarks correspond to the 
findings reported by Se&rest et al. [SechrestLeeMudge96]. 
The case of the go benchmark, where the bi-mode method 
is beaten by the multiple-PHTs, will be discussed in more 
detail in the next section. 

4. Analysis 

Many branches have a tendency to be either taken or not- 
taken most of time. Common examples are branches for er- 
ror checking and looping. These kinds of branches are usu- 
ally described as being strongly biased in one direction. As 
might be expected, strongly biased branches are much easi- 
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Figure 4: Misprediction rates for IBS-Ultrix 

er to predict than weakly biased branches in dynamic 
branch predictors, and this was confirmed by Chang el al. 

[Chang94]. In the same study, they also measured the dis- 
tribution of branch biases for SPEC CINT92. Their mea- 
surement showed that on average about 50% of total 
dynamic branches are attributed to the static branches that 
are biased in either the taken or not-taken direction for 
more than 90% of the time. 

In this section, our analysis extends the idea of bias to 
the dynamic branch substreams that arrive at each two-bit 
counter in the second-level table. Using this concept, we 
will demonstrate the advantages and drawbacks of two 
kinds of information used in the two-level scheme, speciti- 
tally, the branch address and global history. The analysis 
allows us explain why the bi-mode scheme can improve on 
current dynamic branch predictors. 

4.1 Bias measurement for global-history based 
schemes 

As we have noted before, the reason that two-level dy- 
namic branch predictors can achieve higher prediction ac- 
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curacy than the traditional two-bit counter scheme 
proposed by Smith [Smith811 is because, in addition to the 
branch address, they incorporate the branch history infor- 
mation to form the index for the second-level two-bit 
counter table. The index for the second-level table divides 
the dynamic branch stream into substreams that are dircct- 
ed to a saturating two-bit counter. Ideally, the index should 
generate highly biased substreams so that the value of the 
saturating counter selected by the index can stay at one of 
the saturated values most of time. Global history, compared 
to the branch address, can divide a dynamic branch stream 
into more highly biased substreams, as we will show Iatcr. 
However, if the indexing method mixes oppositely biased 
substreams together, then destructive aliasing can arise and 
the associated counter will perform badly as a predictor, bc- 
cause it will oscillate between the two saturated values. Our 
study will compare using branch addresses with global his- 
tory to separate out oppositely biased substreams, and how 
aliasing can degrade the performance of two-level schemes 
using global history. 

To contrast the benefits of address and global history 



branch 
address, i 

dynamic count count of taken out- 
when using comes when using 

counter c, Isid counter c 
bias class normalized count from i=b 

to G Nbc 

II 0x001 0x005 1 1 20 12 11 1 I SNT ST 20/50 12/50 = = 40% 24% 

II 0x100 I a 3 WB 8/50 =I 6% 

ox 150 IO I 1 SNT IO/50 = 20% 

Table 3: An example of calculating the normalized count for a counter c 

bits, we consider two alternative two-level gshare style pre- 
dictors. Both have the same size second-level tables, 256 
counters, but differ in that one employs more history bits, 
representing history-indexed schemes, while the other rep- 
resents address-index schemes. The first scheme xors 8 bits 
of branch address with 8 bits of global history to form the 
index into the second-level table (“history-indexed”). The 
second scheme xors 8 bits of branch address with only 2 bits 
of global history as the index (“address-indexed”). 

We define three bias classes on a stream of branch out- 
comes: 1) strongly taken (ST) if the outcomes are taken 
90% of the time or more; 2) strongly not taken (SNT) if the 
outcomes are not taken 90% of the time or more; and 3) 
weakly biased (WB) if the neither of the above apply. 

We are interested in the stream of branch outcomes, sp 
from a particular static branch, i, to a particular prediction 
counter,j. This stream belongs to one of the three bias class- 
es, i.e., exactly one of the following is true: sg E ST, $9 E 
SNT, or se E WB. A good indexing method will create these 
streams so that the following two conditions hold: 

1. The number of streams that are in the WB class is kept 
small. 

2. Most of the streams incident on a particular prediction 
counter,j = c, belong to only the ST class, or alternatively, 
only the SNT class, i.e., Sic E ST for most i, or sic E SNT for 
most i. A counter should not see an even mix of streams 
from both classes or its prediction ability will be reduced. 

Condition 2 actually states that one of the two strongly 
biased class should dominate the other strongly biased class 
at a counter. When this domination occurs, the counter will 
be biased at one saturated value with little destructive inter- 
ference. We will refer to the more frequent strongly-biased 
class at a counter as the donzinanf class, and the other less 
frequent strongly-biased class as the non-dominant class. 

To be more precise, we should consider streams weight- 
ed by their lengths. If $1 is the number of outcomes in the 
stream 4, we define the normalized count that a branch, i = 
b, contributes to a particular prediction counter,j = c, to be: 

Nbc = 

over all static branches i 

Thus the two conditions become: 
1. (Ci(Nic) 1 for those i such that Sic E WB) << (Zi(Nic) 1 

for those i such that Sic E WB) 
2. (Ci(iVic) 1 for those i such that Sic E ST) should differ 

greatly from (Ci(Nic) I for those i such that Sic E SNT). In an 
ideal situation, one of the sums should be 0. 

Table 3 illustrates the normalized count resulting from 
three streams incident on the same counter c. In this exam- 
ple, there is a total of four static branches (i = 1,..,4) whose 
addresses are 0x001,0x005,0x1 00 and 0x150, respectively, 
that used the two-bit counter c for prediction during the pro- 
gram execution (they may also use other counters too). 
These four streams fall into different bias classes with re- 
spect to c. The normalized count of ST class at the counter 
c is 24%, the SNT class is 60% (40%+20%), and the WB 
class is 16%. Because the SNT class is more frequent than 
the ST class, the SNT is the dominant class in the counter c, 
and the ST is the non-dominant class. In fact, Table 3 shows 
an undesirable situation because the indexing method has 
done a poor job of separating the bias classes and the SNT 
class is not overwhelmingly dominant. 

Figure 5 illustrates the bias classes for all of the predic- 
tion counters for the gee benchmark. We have performed 
the same experiments for other SPEC benchmarks, and we 
select gee because it is representative of the results from the 
other benchmarks, see [SechrestLeeMudge96]. The X axis 
lists all the counters in the second-level table, and the Y axis 
represents the normalized counts of the three bias classes in 
each counter. The counters listed in the X axis are sorted ac- 
cording to the normalized dynamic frequency of WB class. 
It can be seen that the area size of WB region of the history- 
indexed scheme is smaller than that of the address-indexed 
one. This suggests that the scheme employing more branch 
history can generate more highly biased substreams for pre- 
dictors. If there is no harmful aliasing problem in the histo- 
ry-index scheme, i.e., each counter only needs to deal with 
substreams of one bias class, the prediction accuracy will be 
very high [TalcottNemirovskyWood95, 
YoungGloySmith951. 

However, in the usual situation where harmful aliasing 
does exist, the performance of the history based scheme de- 
grades. As shown in the same figure (Figure 5), the non- 
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Figure 5: Bias breakdown for the gshare scheme 
in the SPEC ClNT95 gee benchmark. 
History-indexed on the top, address- 
indexed on the bottom 

This figure shows the bias of branch outcome substreams 
arriving at each of 256 counters in a second-level table. The 
top graph is for the history-index scheme (8 bits of branch 
address xor-ed with 8 bits of global history); the bottom graph 
is for the address-indexed scheme (8 bits of branch address 
xor-ed with 2 bits of global history). These two graphs illus- 
trate the difference between the two indexing methods. The 
address-indexed scheme suffers from a larger number of 
weakly biased (WB) branch substreams, while the history- 
indexed scheme suffers from more non-dominant sub- 
streams, implying a high degree of destructive interference 
between strongly but oppositely biased streams (between the 
SNT and ST classes). 

dominant class in the history-indexed scheme is larger than 
the one in the address-indexed scheme. In other words, al- 
though the history-indexed selects the greater number of 
highly biased substreams, it does not separate the taken and 
not-taken ones as well as address-indexed scheme. 

To summarize the analysis above, an ideal dynamic 
branch predictor should generate as few weakly biased sub- 
streams as possible; in other words, the area of the weakly 
biased region should be as small as possible. At the same 

g 60 

c 70 

z 
o 60 
g 50 

=: 40 

Q 30 dominant 

65 
I 

129 193 256 
lnividual counters 

Figure 6: Bias breakdown for the bi-mode 
scheme 

This figure shows the bias of branch substreams of each 
counter for the bi-mode scheme. This bi-mode scheme has a 
128-counter choice predictor and two 128.counter direction 
predictors. As shown in the figure, the dominant substreams 
dominate most of the counters of the second-level table, 
implying that interference is reduced significantly. 

time, the resulting substreams merged at each counter 
should be as unidirectional as possible; in other words, the 
dominant area in Figure 5 should be large. Unfortunately, 
neither the address-indexed scheme nor the history-indexed 
scheme can achieve both of these two design goals simulta- 
neously. 

4.2 Bias measurement for the b&mode scheme 

In this subsection, we repeat the analysis above for the 
bi-mode prediction scheme. The configuration under exam- 
ination has a 12%counter choice predictor indexed by the 
branch address and two banks of 128 counters in the scc- 
ond-level table, each of which is indexed by 7 bits of branch 
address xor-ed with 7 bits of global history. This system has 
about 50% more bytes than the predictors in the previous 
subsection, so the following analysis should be viewed 
qualitatively. 

Figure 6 presents the measurement results. It can be seen 
that the weakly biased class in the bi-mode scheme is kept 
as small as the one in the history-indexed scheme, indicat- 
ing that the advantage of employing history information is 
preserved. On the other hand, Figure 6 also shows the bi- 
mode scheme yields a much larger area for the dominant 
class than the history-indexed scheme, implying that dc- 
structive aliasing has been reduced. 

The counting arguments that we employ to classify the 
ST, SNT, and WB classes are open to the criticism that they 
do not capture the order in which the ST and SNT runs ap- 
pear. For example, it is undesirable for them to be intcr- 
mixed so that the stream changes between the two classes. 
As a final experiment, we have counted the numbers of 
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history-indexed 1 3.826,578 1 3,589,689 1 2.252.874 

bi-mode 3,685,544 2,717,563 1 2,226,353 

Table 4: Numbers of changes between different 
bias classes for the history-indexed and 
bi-mode schemes 

This table shows numbers of changes between branch out- 
come streams of different bias classes in the history-indexed 
and bi-mode schemes. We first count changes for each bias 
class in a counter, and then accumulate the counts of all 
counters for a scheme. For example, the count for the domi- 
nant class of the history-indexed scheme is the total number 
of changes of the dominant class due to interference by the 
other two classes in the scheme. 

changes between bias classes due to interference. Table 4 
shows the results for the history-indexed and bi-mode 
schemes. The bi-mode scheme has fewer changes, implying 
that its ST and SNT classes are less intermingled. This 
means less interference, and further illustrates why our pro- 
posed prediction scheme perform better than conventional 
two-level schemes. 

4.3 Breakdown of misprediction for the gshare 
and bi-mode schemes 

We have also measured tl,e misprediction contributed by 
three biased classes for the gshare and bi-mode schemes. 
Again, for the gshare scheme, the configurations using few- 
er global history bits and more global history bits are both 
included for comparison. 

Figure 7 presents the measurement results for the gee 
benchmark. Three different sizes are studied for the branch 
predictors: 256, 1024, and 32,768 counters in the second 
level table. For each configuration, the misprediction is bro- 
ken down to three categories according to the bias classes. 
In other words, the sum of mispredictions from three classes 
is the misprediction rate for the corresponding scheme. For 
the gshare predictors of the same size, the one using fewer 
global history bits always has the least error from the 
strongly-biased classes, but it suffers from poor prediction 
for the weakly-biased substream. The bi-mode scheme 
keeps a reduced error for the weakly biased class, while suc- 
cessfully reducing the error from strongly-biased classes. 

4.4 go benchmark 

In Section 3, we noted that the bi-mode scheme was not 
the best for the go benchmark. In this section, we provide 
further analysis. 

The go benchmark is intrinsically hard to predict because 
about half of its dynamic branches are in the WB class. 
Figure 8 shows the n&prediction contributed by the three 
bias classes for the go benchmark. It is clear that for all the 
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Figure 7: Misprediction contributed by three bias 
classes in gee 

In this figure, three schemes are compared, a gshare using 
fewer history bits (representing the address-indexed 
scheme), a gshare using more history bits (history-indexed) 
and the bi-mode scheme. For each scheme, three different 
sizes of second-level tables are examined: 256, 1 K and 32K 
counters. gshare (m) represents a gshare scheme that uses 
m-bit global history, while bi-mode (m) represents a bi-mode 
scheme that uses m-bit global history for its direction predic- 
tors. The choice predictor of the bi-mode scheme is half the 
size of its second-level table. As shown in the figure, the 
address-indexed scheme always has larger misprediction for 
the WI3 class. The history-indexed scheme has less mispre- 
diction for the WB class, but has more for the SNT and ST 
classes due to interference. The bi-mode scheme reduces 
error from the WI3 and reduces, in most cases, the mispredic- 
tion for the SNT and ST by removing interference. 

q .SNToSTmWB 
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Figure 8: Misprediction contributed by three bias 
classes in go 

This figure shows misprediction due to three bias classes for 
the go benchmark. As the same in Figure 7, three schemes 
with three different sizes of second-level tables are com- 
pared. As shown in the figure, the misprediction due to the 
WB class dominates in go for three schemes, and thus the 
interference between SNT and ST classes is not the major 
concern. To improve prediction accuracy for go, more history 
bits should be used because it is an effective way to remove 
the WB class. Note that as more history bits are used, the rel- 
ative misprediction rates due to the WB class becomes 
smaller. 



schemes and configurations the misprediction for the WB 
class dominates-destructive aliasing is not the major con- 
cern. There is not much room for the bi-mode scheme to im- 
prove because it is targeted at eliminating harmful aliasing 
rather than improving prediction for the weakly biased sub- 
streams. As observed in the previous subsection, the dy- 
namic frequency of the weakly biased class is mainly 
determined by the number of global history bits used. From 
Figure 8, we see that the error of the WI3 class is reduced as 
more global history bits are applied. The prediction accura- 
cy for programs like the go benchmark will only improve if 
more global history information is employed so that more 
strongly biased substreams can be generated. 

5. Concluding Remarks 

In this paper, a new global-history based branch predic- 
tion scheme, the bi-mode predictor, is proposed. It is de- 
signed to improve predictions by eliminating the aliasing in 
dynamic branch predictors. Its success relies on dynamical- 
ly determining the taken or not-taken direction with an ac- 
curate but simple choice predictor. This classification can 
help removing much of the destructive aliasing while keep- 
ing the harmless aliasing together for the two-bit counter ta- 
bles. 

A detailed analysis on the mechanism of two-level 
scheme’s index system was also presented in the paper. 
From the analysis we found that by using more global his- 
tory bits in an index can move more branches from the 
weakly biased group to the strongly biased group, but these 
indices suffer from destructive aliasing. Using more branch 
address bits reduces the destructive aliasing but increases 
the weakly biased group. The benefits of using branch ad- 
dresses and global history cannot be preserved in current 
two-level schemes simultaneously, but they can in the bi- 
mode scheme. 

The bi-mode scheme can outperform other dynamic pre- 
dictors, yet there is still room for improvement. One poten- 
tial shortcoming for the bi-mode scheme is that, though it 
can distinguish strongly taken and strongly not-taken sub- 
streams as shown in Figure 6, it can still suffer from inter- 
ference between the weakly biased and strongly biased 
substreams. Therefore, there are at least two directions for 
the future work: one is to find a cost-effective way to reduce 
the weakly biased substreams, and the other is to further 
separate the weakly-biased substreams from the strongly- 
biased substreams for the counters. We are currently inves- 
tigating these issues. 
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